A systematic approach to planning and performing Sensory Tests

Choice of the test method and appropriate panel selection criteria

Maria João Monteiro
Escola Superior de Biotecnologia
Universidade Católica Portuguesa

CATÓLICA
UNIVERSIDADE CATÓLICA PORTUGUESA/PORTO
Escola Superior de Biotecnologia

European Sensory Network
50 years in search of the consumers’ true motivations

European Sensory Network co-founder and scientific advisor Egon P. Köster, sensory expert and Professor emeritus of Experimental Psychology, by occasion of his 75th birthday

“People only eat what tastes good to them and only buy what they like. Yet the question of what is accepted by whom is not easy to answer. Consumer sensory research attempts to get to the bottom of this question and to discover which product attributes are decisive and which preferences influence the consumers' purchasing decisions”.

Professor Egon P. Köster, Interview Dec. 2006
“Measure what is measurable, and make measurable what is not so.”

Galileo Galilei (1564–1642)
Sensory measures

Product Perception
- Discrimination
- Description
- Threshold

Product Evaluation (Affective testing)
- Acceptance
- Preference

Trained panel vs. Consumers panel
Different objectives vs. Different panels
DISCRIMINATION TESTS

- Does a sensory difference/similarity exists between samples?

- Is there a perceptible difference/similarity between the products concerning the intensity of a selected attribute?

- Assessors are asked to choose:
 - Different or same?
 - More intense, less intense?
 - Better, worse?

- Assessors are asked to measure:
 - Degree of difference?
 - Degree of liking?
 - Degree of intensity?
Objectives

Are the products similar or are they different in any way?

Discrimination tests

What are the product sensory attributes, what is their intensity?

Descriptive tests

Are the products liked, which is the preferred?

Affective tests

- **Product**
- **Assessors**
- **Desired level of confidence in the conclusions**
Affective testing

- **Consumer panel**
 - No relevant experience or training
 - Selection based on representativeness

Product perception

- **Trained panelists**
 - Selection and training: objectivity, precision, accuracy and reproducibility
 - Trained in test methodology and type of product

- **Expert panelists**
 - Capable of evaluating differences and explaining their causes

The required level of qualification (experience and ability) of assessors has to be carefully considered according on the specific test objective/situation.
> OVERALL DIFFERENCE TESTS

CHOICE TESTS

Triangle test
- Which is the odd sample?

Duo-trio test
- Which sample is the same as the reference?
- Product presented twice?

2-out-of-5 test
- Are the samples the same or different?

Simple difference
- Is the sample “A” or “not A”?
Features
Applicable only to fairly homogeneous products
Triangular, duo-trio and 2-out-of-five, enable estimation of population’s proportion able of detecting a difference
Limited information: determine neither the size nor the direction of difference.
Inadequate for comparison of moderate/large number of products.

Assessors
Level of qualification dependent on the specific test objectives
Panel dimension function of type of test and sensitivity (α, β, p_d)

<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
<th>p_d</th>
<th>Duo-trio</th>
<th>Triangular</th>
<th>2-out-of-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.30</td>
<td>0.4</td>
<td>30</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>0.05</td>
<td>0.05</td>
<td>0.4</td>
<td>67</td>
<td>40</td>
<td>18</td>
</tr>
<tr>
<td>0.05</td>
<td>0.05</td>
<td>0.2</td>
<td>268</td>
<td>147</td>
<td>49</td>
</tr>
</tbody>
</table>
Applications

- Selection and training of assessors
- To determine whether a sensory perceivable difference results or not from a change in ingredients or process
- Threshold estimation (triangle test)
- Limited application to Quality Control/Quality Assurance
Quality Control / Quality Assurance

Monitoring product consistency
Monitoring raw material consistency
Monitoring changes in product formulation
Monitoring changes in manufacturing process

Quality Control/Quality Assurance usually based on “limited variation” rather than “no difference”

Inadequacy of choice sensory tests?
Difference-from-control

One product is the designated “control”. All others are evaluated with respect to the size of difference to the control, using the provided scale.

Verbal category scale

- No difference
- Very slight difference
- Slight/moderate difference
- Moderate difference
- Moderate/large difference
- Large difference
- Very large difference

Continuous scale

Randomized Complete Block Design or Balanced Incomplete Block Design
Assessors:
Level of qualification dependent on the specific test objectives. Assessors consistency should be checked for more precise results.

Advantages:
Applicable to heterogeneous products.
Estimates the size of difference to the designated control (but not the direction or the attributes responsible).

Relative size of a variation is important for decision making:
Quality control/assurance
Impact of ingredient, process or package changes
Shelf life studies
Situation:
Two wine tanks. One suffered a bacterial contamination. Want to know if the contamination had sensory perceptible consequences.

Testing: Triangular test,
- 24 assessors,
- 14 correct identifications of the odd sample

Conclusion:
In fact a perceptible difference was observed. At 95% probability, the mean population proportion able to detect a difference was estimated in 38% with a minimum 13%.*

*assuming the population had similar discriminating ability of panel used
Situation:
- One product currently produced;
- 3 different formulations of breakfast cereals (antioxidants composition) under development. Perceptible sensory difference?

Testing conditions:
- Difference-from-control test,
- 23 trained assessors
- continuous scale
 0 - no difference
 6 - large difference

<table>
<thead>
<tr>
<th>Sample</th>
<th>Blind control</th>
<th>Formulation A</th>
<th>Formulation B</th>
<th>Formulation C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean response</td>
<td>0,5</td>
<td>1,0</td>
<td>1,6*</td>
<td>1,9*</td>
</tr>
</tbody>
</table>

LSD_{95%} : 0,7

* Significant difference 95% confidence level
Is there a perceptible difference/similarity between the products concerning the intensity of a selected attribute?

Choice tests
- Paired comparison (2-AFC)
- Pairwise ranking test

Measurement tests
- Grading
- Ranking
- Scaling
 - Magnitude estimation
 - Rating

Hedonic and non-hedonic testing

CRITICAL: the attribute under test must be clearly defined and understood by assessors
Paired comparison

- Two products, two samples presented

- In which sample is attribute X more intense?

Pairwise ranking test

- Comparing several samples in all possible pairs

<table>
<thead>
<tr>
<th>Nº samples</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº pairs</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>15</td>
</tr>
</tbody>
</table>

- Which sample do you prefer?

Very easy to perform and easy to interpret

Very limited information
Ordinal scales require non-parametric statistical analysis. Non-parametric statistics are more robust than parametric ones (less affected by anomalies in data) but are usually less powerful than parametric tests (if a difference exists, the parametric test will be more sensitive in demonstrating it).
RANKING TEST

Ranking samples according to the intensity of designated attribute or preference (ordinal scale)

- Easier and less fatiguing than other measurement methods
- Moderate statistical skills required for data analysis

Main applications:
- panel training and assessment
- pre-sorting a large number of samples in product development and consumer testing

Main disadvantages: Intensity of attribute and size of difference between samples is not determined
MAGNITUDE ESTIMATION

1. A value is assigned to the intensity of the attribute of interest of the first sample.

2. Subsequent samples are rated in proportion to the first sample.

- Requires specific training of assessors
- Not adequate for differentiating small differences
- Not adequate for evaluation of intensities near threshold level
- Does not provide absolute ratings of the intensity of the attribute

Classifications are not affected by scale end-effect
One product is the designated “control”. All others are evaluated with respect to the size of difference of the assigned attribute, to the control, using the provided scale.

<table>
<thead>
<tr>
<th>Stronger</th>
<th>Better</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same</td>
<td>Same</td>
</tr>
<tr>
<td>Weaker</td>
<td>Worse</td>
</tr>
</tbody>
</table>

Overall liking

- Much worse
- Same
- Much better

Attribute X

- +3: Much stronger
- +2
- +1
- 0: Equal
- -1
- -2
- -3: Much weaker
The intensity of the selected attribute is rated on a specified intensity scale.

<table>
<thead>
<tr>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Strong</td>
</tr>
<tr>
<td>12,5</td>
<td>Moderate-strong</td>
</tr>
<tr>
<td>10</td>
<td>Moderate</td>
</tr>
<tr>
<td>7,5</td>
<td>Slight-moderate</td>
</tr>
<tr>
<td>5</td>
<td>Slight</td>
</tr>
<tr>
<td>2,5</td>
<td>Very slight</td>
</tr>
<tr>
<td>1</td>
<td>Threshold</td>
</tr>
<tr>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td>6</td>
<td>Very intense</td>
</tr>
<tr>
<td>5</td>
<td>Intense</td>
</tr>
<tr>
<td>4</td>
<td>Weak</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Absent</td>
</tr>
</tbody>
</table>
Classification scales:

- Broad enough to include full range of parameter intensities;
- Broad enough to enable discrimination of small differences;
- Panelists tend to avoid the extremes of the scale, distorting the scale. In discrete scales, the smaller the number of categories, the greater the end-effect.
- Intensity can usually be more accurately graded with line scales. However, less trained assessors usually consider line scales more difficult to use.
Assessors:

- Results are critically dependent on assessors qualification and consistency:
 - Training should include familiarization with the range of products and the use of classification standards.
 - Periodic checking for consistency

Applications:

- SCALING tests largely used in quality control/assurance, product development, ingredient, process or package changes evaluation and shelf life studies.
HEDONIC SCALES

PLEASURE EVALUATION

9 Point Category Hedonic Scale

<table>
<thead>
<tr>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Like extremely</td>
</tr>
<tr>
<td>8</td>
<td>Like very much</td>
</tr>
<tr>
<td>7</td>
<td>Like moderately</td>
</tr>
<tr>
<td>6</td>
<td>Like slightly</td>
</tr>
<tr>
<td>5</td>
<td>Neither like nor dislike</td>
</tr>
<tr>
<td>4</td>
<td>Dislike slightly</td>
</tr>
<tr>
<td>3</td>
<td>Dislike moderately</td>
</tr>
<tr>
<td>2</td>
<td>Dislike very much</td>
</tr>
<tr>
<td>1</td>
<td>Dislike extremely</td>
</tr>
</tbody>
</table>

- **PERYAM and GIRARDOT 1952;**
- **PERYAM and PILGRIM 1957**

Labelled Affective Magnitude Scale (LAM)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+100</td>
<td>Greatest imaginable like</td>
</tr>
<tr>
<td>+80</td>
<td>Like extremely</td>
</tr>
<tr>
<td>+60</td>
<td>Like very much</td>
</tr>
<tr>
<td>+40</td>
<td>Like moderately</td>
</tr>
<tr>
<td>+20</td>
<td>Like slightly</td>
</tr>
<tr>
<td>0</td>
<td>Neither like nor dislike</td>
</tr>
<tr>
<td>-20</td>
<td>Dislike slightly</td>
</tr>
<tr>
<td>-40</td>
<td>Dislike moderately</td>
</tr>
<tr>
<td>-60</td>
<td>Dislike very much</td>
</tr>
<tr>
<td>-80</td>
<td>Dislike extremely</td>
</tr>
<tr>
<td>-100</td>
<td>Greatest imaginable dislike</td>
</tr>
</tbody>
</table>

- **SCHUTZ and CARDELLO, 2001**

The most widely used scale to determine consumer acceptance.
“Unfortunately, 9-point Hedonic scale suffers from problems related to unequal scale intervals and the under use of end categories.

LAM scale was shown to have equal reliability and sensitivity to the hedonic scale, provided somewhat greater discrimination among highly liked foods, and resulted in data that were similar to magnitude estimation in terms of the obtained ratios among rated stimuli.

The LAM scale was also judged by consumers to be as easy to use as the 9-pt hedonic scale and significantly less difficult than magnitude estimation.”

SCHUTZ and CARDELLO
Journal of Sensory Studies, 2004
HEDONIC RATING

AGE:

☐ SUPER GOOD
☐ VERY GOOD
☐ GOOD
☐ NEITHER GOOD NOR BAD
☐ BAD
☐ VERY BAD
☐ SUPER BAD

WHY? __

JUST-ABOUT-RIGHT SCALE

- Much too weak
- Just about right
- Much too strong

Easy to use by assessors

Intensity rate or acceptability rate?

Just-right meaning:

Consumer panel
- Okay
- Very good
- I like the product
- Like it very much
- Highly acceptable
- Desirable
- Best for the situation
- Correct

In-house panel
- Prefer product
- Best for the situation
- Like extremely

M. Gacula, JR. et al 2006
Results apparently straightforward to interpret.

Will consumers rate as “just-right” those formulations that they actually like the most?

Optimal sucrose level in lemonade, Epler et al, 1998
Judgment

Health considerations (sugar, salt, fat...)
How do products differ from an ideal?
 • Can an orange juice have enough fresh orange flavor?
 • Are there enough chocolate chips in a chocolate cookie?

“Asking respondents to consider reasons for their preference may subsequently alter their preference.”

Wilson and Schooler, 1991
> GOLD RULES OF HEDONIC EVALUATION

- **REPRESENTATIVE** panel selection

- Adequate panel **DIMENSION**

- **SIMPLE** is **BEAUTIFUL**
 Bias results, Halo effect, Guided appreciation, Judgement

DON’T ...

- ask a consumer *for a response that he is not able to give*;
- ask a trained panelist *for a consumer response*.

“What might taste good in a laboratory setting doesn’t necessarily taste good in a daily real-life setting.”

Professor Egon P. Köster, Interview Dec. 2006
Objective:

Study of the impact of changing the cork material in the degree of oxidation of a table white wine

5 alternative corks tested
18 months storage

<table>
<thead>
<tr>
<th>Sample Mean response cork</th>
<th>Blind Control Standard</th>
<th>Cork A</th>
<th>Cork B</th>
<th>Cork C</th>
<th>Cork D</th>
<th>Cork E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>+0.8</td>
<td>-0.5</td>
<td>+3.2*</td>
<td>+0.5</td>
<td>-0.2</td>
</tr>
</tbody>
</table>

* Significant difference 95% confidence level

> ATTRIBUTE DIFFERENCE TEST - APPLICATION

- Much weaker
- 0 Same
+6 Much stronger
Objective:

Comparison of the intensity of rancid flavour in 5 different brands of potato chips subjected to temperature abuse.

Intensity rating, 18 trained assessors
15 cm line scale

<table>
<thead>
<tr>
<th>Sample</th>
<th>Brand 1</th>
<th>Brand 2</th>
<th>Brand 3</th>
<th>Brand 4</th>
<th>Brand 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean response</td>
<td>2.2a,b</td>
<td>6.3c</td>
<td>7.0c</td>
<td>1.5a</td>
<td>3.3b</td>
</tr>
</tbody>
</table>

Different letters - Significant difference 95% confidence level
DISCRIMINATION TESTING - APPLICATION

1. Internal Screening
 - YES: Difference From Control Test
 - YES: Statistical Difference
 - YES: Acceptability Test
 - NO: Overall Acceptability Less than 6.0
 - NO: Continue Shelf Life Study
 - YES: Overall Acceptability Drops 20%
 - NO: Shelf Life Study Complete
 - NO: Assign Expiration Date and Update Specifications
6. Shelf Life Study Complete
5. Next Time Interval
4. Do Not Consume
3. Visibly Safe
 - NO: Continue Shelf Life Study

Space Food System Laboratory
Shelf Life Analysis Operations Guideline

NASA
DESCRIPTIVE ANALYSIS

Attempts to provide a quantitative specification of (all) the sensory attributes of a product.
Main applications:

- Specifying sensory changes in product development as a function of ingredient, packaging or processing variables and for shelf-life and quality control evaluation.

- Data used for correlation with consumer judgment for purposes of building predictive or explanatory models of factors driving likes and dislikes.

- Data used for correlation with instrumental measures of food properties.
The most used and generally the most reliable profiling technique. Able of producing reproducible results, is suitable for research as well as for routine analysis.

Procedures
Assessors individually score each sample intensities with respect to learned absolute intensity scales
Profile is obtained by statistical treatment of obtained data (Simple graphical representation of data, ANOVA, PCA,...).
Panel selection
Ability to recognize and evaluate stimuli.
Creativity and oral expression skills

Sample selection
Samples chosen, produced or modified to cover expected range of each attribute.

Attributes generation

Attributes selection

Reference standards

Panel training

Panel evaluation

Product profiling

Attributes reduction techniques

Sample selection
Samples chosen, produced or modified to cover expected range of each attribute.

Attributes generation

Attributes selection

Reference standards

Panel training

Panel evaluation

Product profiling

Attributes reduction techniques

PCA MADEIRA WINES

 - cherry, nutty, coffee, astringency and cocoa flavors-by-mouth.

- **1999 and 1996**
 - vanilla, caramel, oak, brown sugar rum, baked and citrus

- **1993**
 - baked, oak and vanilla

The first 2 PCs accounted for 69% of the variance.
CONSENSUS SENSORY PROFILING

Through consensus discussion the panel develops its own terminology and scores pertaining to the sample set presented.

Suitable for routine sensory evaluation of non-recurring products. Many samples can be tested at relatively low cost.

FREE CHOICE PROFILING

Assessors freely choose terminology and scale to evaluate products. Only minimum panelists training is required.

Can be used as preliminary step to develop descriptive terms, to be used in conventional profiling
TIME-INTENSITY DESCRIPTIVE ANALYSIS

In most sensory methods, time as a dimension is not considered. However for certain attributes, the perception's intensity varies with time over a longer or shorter period.

Examples: - sweetness of sweeteners
- bitterness of beer or coffee
- astringency of wine

Protocols of evaluation must be carefully defined and requires Well-trained assessors
PREFERENCE MAPPING

Evaluate pleasure & Explore perception

- Consumers are the judges of the product, but they have neither the sensorial capacities nor the vocabulary required to express their judgments in a reliable and precise way.

- Trained sensorial experts are able to specify the nature and intensity of sensations without attaching any hedonistic value.

- By usage of statistical tools the two sets of data can be linked.
The best is not always the first choice

(...) As E.P. Köster sees it, consumer research comes up short when it takes note of the test ratings alone and brings the product to market readiness solely because it has the highest test results. “We often observed that such products were at first successful but then suddenly flopped. One reason for this is that the consumers’ preferences are continuously changing. Among other things people are always looking for new experiences to allay their boredom by bringing more variety into their lives. The best long term success is achieved with products that are rated positively on first consumption, but that are also complex and multi-layered. This allows the consumer to continually discover new aspects. Such products can satisfy the basic human need for excitement and stimulation.”

Professor Egon P. Köster, Interview Dec 2006
Thank you very much for your attention